■15ステップの演習でスキルを獲得
本書は4章構成となっています。
1章には「演習に入る前の予備知識」を集めました。環境構築、Python、数値計算ライブラリNumPyについて押さえておきます。
2章は「基礎を押さえる7ステップ」です。日本語自然言語処理と機械学習の基礎を、実際のプログラム例を見ながら、1ステップずつ学習していきます。本書の核となる章です。
3章は「ニューラルネットワークの6ステップ」です。取っつきにくい深層学習(Deep Learning)の仕組みと、自然言語処理への適用について、わかりやすく説明します。
4章は「2ステップの実践知識」です。2章と3章で扱いきれなかったものの、機械学習や自然言語処理を実アプリケーションとして実装する際に役立つ知識を習得します。
■自分のぺースで1ステップずつ学習
本書をはじめとする「Step Up!選書」では、読者が自分のぺースで1ステップずつ学習を進め、独学で技術力を高めることができるように、考え抜かれた編成でリードしていきます。特に本書は、最後まで全部読み通さないと漏れが生じたり、不完全な知識になってしまったりする類の構成を排しています。
網羅的な説明項目の列挙や、理論体系の単純トレースはしません。開発リファレンスや逆引き、クックブック(開発レシピ)とも違います。プロのエンジニアとしての実力を高めるための著者オリジナルのシナリオに、士気高く踏み出してください。
■著者プロフィール
土屋祐一郎(つちや ゆういちろう)
本名、橘(たちばな) 祐一郎。東京大学工学部卒、同大大学院情報理工学系研究科中退。2015年度IPA未踏スーパークリエータ。現在は株式会社PKSHA Technology所属。大学とIPA未踏では主に画像ドメインで機械学習を扱い、現職では自然言語や画像を扱う事業部にてソフトウェアエンジニアとして勤務。その他、Deep Learning講座「NICO2AI」の講師などの活動も行う。
■サンプルコードのダウンロードはこちら
■本書の主な内容
|